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Abstract Fractional differential equations are widely used to model many physical
phenomena in science and engineering. This paper investigates the exact solutions
of Wick-type stochastic fractional variable coefficients coupled KdV equations. By
implementing fractional sub-equation method based on the Kudryashov technique,
new families of exact travelling wave solutions are obtained. Moreover, the obtained
white noise functional solutions can be expressed as exponential type. In particular,
the stochastic fractional model is reduced into a deterministic fractional one by using
the Hermite transform. The results reveal that the proposed technique is very effective
and simple for obtaining exact solutions of stochastic fractional partial differential
equations.

Keywords Stochastic fractional equations · Hermite transform ·
White noise functional solutions

1 Introduction

Fractional differential equations (FDE) are generalizations of classical integer order
differential equations. FDEs are used to model scientific problems in many areas for
instance viscoelastic behavior, dielectric relaxation phenomena in polymeric materi-
als, electromagnetics, acoustics, viscoelasticity, neutron point kinetic model, anom-
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alous diffusion, vibration and control, continuous time random walk, signal and image
processing, fluid dynamics and so on [1]. Due to its potential applications, researchers
have devoted considerable effort to the study of explicit and numerical solutions to non-
linear differential equations of fractional order. Recently, analytical solutions of deter-
ministic fractional partial differential equations attracted great attention and several
different analytical methods such as invariant subspace method [2], Variational method
[3], Improved (G’/G)-expansion method [4] and differential transform method [5].

It is well known that the motion of long, unidirectional, weakly nonlinear water
waves on a channel can be described by the Korteweg-de Vries (KdV) Eqs. [6–8]. The
fractional coupled KdV equations can be written in the form [9]

{
Dα

t u + p(t)u Dα
x u + q(t)vDα

x v + r(t)D3α
x u = 0,

Dα
t v + D3α

x v − 3u Dα
x v = 0,

(1)

where (x, t) ∈ R × R+, 0 < α ≤ 1; Dα
t and Dα

x are the modified Riemann-Liouville
derivatives; p(t), q(t) and r(t) are bounded measurable or integrable functions on
R+. Though exact solutions for deterministic fractional differential equation have
extensively studied, there are only few works on the exact solutions of stochastic
fractional partial differential equations. In this paper, we consider the stochastic version
of Eq. (1) in the Wick sense of the form [9]

{
Dα

t U + P(t) � U � Dα
x U + Q(t) � V � Dα

x V + R(t) � D3α
x U = 0,

Dα
t V + D3α

x V − 3U � Dα
x V = 0,

(2)

where “�” is the Wick product on the Kondratiev distribution space (S)−1, P(t), Q(t)
and R(t) are (S)−1-valued functions [10].

Moreover, solving stochastic partial differential equations is more complex when
compared to deterministic partial differential equations, because of its additional ran-
dom terms [10]. Stochastic process models play an important role in a range of appli-
cation areas of chemistry [11,12]. Wadati [13,14] first introduced and obtain soliton
solutions for stochastic Korteweg-de Vries equation and subsequently many authors
[15–17] have investigated the exact solutions for the stochastic partial differential
equations. Kim and Sakthivel [18] obtained new exact travelling wave solutions for
the Wick-type stochastic generalized Boussinesq equation and Wick-type stochastic
Kadomtsev-Petviashvili equation with variable coefficients. However, finding exact
solutions of stochastic fractional partial differential equations is still in initial stage.
More recently, Ghany et.al, [9] obtained exact traveling solutions such as exponential,
hyperbolic and trigonometric types for Wick-type stochastic fractional variable coeffi-
cients coupled KdV equations by using the Hermite transform and white noise theory.
Motivated by this consideration, this paper addresses the issue of exact solutions for
stochastic fractional partial differential equation.

At the present, there are many methods for finding exact solutions of nonlinear evo-
lution Eq. [6]. However, one of the important method called the Kudryashov technique
was first proposed in [19] for solving nonlinear evolution equations and the advantage
of this method was discussed in the recent papers (see [20,21] and references therein).
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However, this method has not been extended to solve fractional Wick-type stochastic
PDEs. In this paper, the main aim is to propose the modified fractional sub-equation
method based on the Kudryashov technique to construct new families of exact ana-
lytical solutions for the Wick-type stochastic fractional variable coefficients coupled
KdV Eq. (2) involving the modified Riemann-Liouville derivative.

2 Fractional sub-equation method based on the Kudryashov technique

In this section, we outline the main steps of the fractional sub-equation method based
on the the Kudryashov technique for finding exact solutions of stochastic fractional
partial differential equations. In this work, we use the modified Riemann-Liouville
derivative of order α which is defined by Jumarie [22]:

Dα
t f (t) =

⎧⎨
⎩

1
�(1−α)

d
dt

∫ t
0 (t − ξ)−α( f (ξ)− f (0))dξ, 0 < α < 1,

( f (n)(t))(α−n), n ≤ α < n + 1, n ≥ 1.
(3)

Also, the main properties of the modified Riemann-Liouville derivative is provided in
[22] and three important properties for the modified Riemann-Liouville derivative are
given as follows:

Dα
t tr = �(1 + r)

�(1 + r − α)
tr−α, (4)

Dα
t ( f (t)g(t)) = g(t)Dα

t f (t)+ f (t)Dα
t g(t), (5)

Dα
t f [g(t)] = f ′

g[g(t)]Dα
t g(t) = Dα

t f [g(t)](g′(t))α. (6)

Consider the fractional Riccati equation in the following form

Dα
ξ ψ(ξ) = ψ(ξ)2 − ψ(ξ), (7)

where Dα
ξ ψ(ξ) denotes the modified Riemann-Liouville derivative of orderα forψ(ξ)

with respect to ξ . Eq. (7) is the fractional Riccati differential equation, where α denotes
the order of the fractional derivative. In order to obtain the general solutions for Eq.
(7), we consider ψ(ξ) = H(η) and a nonlinear fractional complex transformation
η = ξα

�(1+α) . By using Eq. (4) and the first equality of Eqs. (6), (7) can be transformed
to the following second order ordinary differential equation

H ′(η) = H(η)2 − H(η). (8)

By the general solutions of Eq. (8), we get

H(η) = 1

1 + eη
. (9)
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Since Dα
ξ ψ(ξ) = Dα

ξ H(η) = H ′(η)Dα
ξ η = H ′(η), we obtain

ψ(ξ) = 1

1 + e
ξα

�(1+α)
. (10)

Consider a nonlinear fractional partial differential equation (PDE), say in the inde-
pendent variables t, x1, x2, · · · , xn ;

P(u1, · · · , uk, Dα
t u1, · · · , Dα

t uk, Dα
x1

u1, · · · , Dα
x1

uk, · · · ,
Dα

xn
u1, · · · , Dα

xn
uk, D2α

t u1, · · · , D2α
t uk, D2α

x1
u1, · · · ) = 0, (11)

where P is a polynomial in ui and their various partial derivatives including fractional
derivatives; ui = Ui (t, x1, x2, · · · , xn), i =, 2 · · · , k are unknown functions.

Step 1. Suppose that

{
ui (t, x1, x2, · · · , xn) = Ui (ξ),

ξ = ct + k1x1 + k2x2 + · · · + kn xn + ξ0. (12)

By using the second equality of Eqs. (6), (12) and (11) can be reduced into the
following fractional ordinary differential equation with respect to the variable
ξ :

P̃(U1, · · · ,Uk, cDα
t U1, · · · , cDα

ξ Uk, k1 Dα
ξ U1, · · · , k1 Dα

ξ Uk, · · · ,
kn Dα

ξ U1, · · · , kn Dα
ξ Uk, c2 D2α

ξ U1, · · · , c2 D2α
ξ Uk, k2

1 D2α
ξ U1, · · · ) = 0,

(13)

Step 2. Assume that the solution of Eq. (13) can be expressed by a polynomial in
ψ(ξ) of the form

U j (ξ) =
m j∑
i=0

a j,iψ
i (ξ), (14)

where ψ(ξ) satisfies Eq. (7), and a j,i , i = 0, 1, · · · ,m j , j = 1, 2, · · · , k
are unknown constants to be determined later, a j,m �= 0. By considering the
homogeneous balance between the highest order derivatives and nonlinear
terms appearing in Eq. (13), the positive integer m j can be determined.

Step 3. Substituting Eq. (14) into Eq. (13) and using Eq. (7), collecting all terms with
the same order ofψ(ξ) together, the left-hand side of Eq. (13) is converted into
another polynomial in ψ(ξ). Equating each coefficient of this polynomial to
zero, we can obtain a set of algebraic equations for a j,i , i = 0, 1, · · · ,m j , j =
1, 2, · · · , k.

Step 4. Solving the resulting system of algebraic equations in Step. 3 and using solu-
tion (10), finally we can construct family of exact solutions for Eq. (11).
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Remark 1 If we set α = 1 in Eq. (7), then it becomesψ ′(ξ) = ψ(ξ)2 −ψ(ξ), which is
the classical Riccati differential equation and can be directly used for solving ordinary
partial differential equations.

3 Exact traveling wave solutions for Eq. (2)

In this section, first we reduce the given stochastic fractional partial differential equa-
tion into a deterministic fractional partial differential equations by applying Hermite
transform. Further, by applying proper transformation, the obtained fractional PDE
can be converted into a fractional ODE. Then, by implementing the proposed modified
fractional sub-equation method based on Kudryashov technique, we obtain a family
of solutions for the formulated fractional PDE. Then, under certain conditions, we can
take the inverse Hermite transform and thereby obtain solution of Wick-type stochastic
fractional variable coefficients coupled KdV Eq. (2).

Taking the Hermite transform in Eq. (2), we get the following deterministic frac-
tional partial differential equation

⎧⎪⎪⎨
⎪⎪⎩

Dα
t Ũ (x, t, z)+ P̃(t, z)Ũ (x, t, z)Dα

x Ũ (x, t, z)

+Q̃(t, z)Ṽ (x, t, z)Dα
x Ṽ (x, t, z)+ R̃(t, z)D3α

x Ũ (x, t, z) = 0,

Dα
t Ṽ (x, t, z)+ D3α

x Ṽ (x, t, z)− 3Ũ (x, t, z)Dα
x Ṽ (x, t, z) = 0, (15)

where z = (z1, z2, · · · ) ∈ C
N is a vector parameter. In order to obtain the traveling

wave solutions of Eq. (15), consider the transformation Ũ (x, t, z) = u(x, t, z) =
u(ξ(x, t, z)), Ṽ (x, t, z) = v(x, t, z) = v(ξ(x, t, z)) with

ξ(x, t, z) = kx + ω

∫ t

0
l(τ, z)dτ + ξ0, (16)

where k, ω and ξ0 are arbitrary constants which satisfy kω �= 0 and l(τ, z) is nonzero
function of the indicated variables to be determined later. By using the above trans-
formation, Eq. (15) can be changed to the form

{
(ωl(t, z))αDα

ξ u + kα pu Dα
ξ u + kαqvDα

ξ v + k3αr D3α
ξ u = 0,

(ωl(t, z))αDα
ξ v + k3αD3α

ξ v − 3kαu Dα
ξ v = 0, (17)

where p(t, z) = P̃(t, z), q(t, z) = Q̃(t, z) and r(t, z) = R̃(t, z). By balancing
D3α
ξ u, u Dα

ξ u and D3α
ξ v, vDα

ξ v and u Dα
ξ v, we can obtain m = n = 2. Now, we

assume that the solution of Eq. (15) can be expressed in the form

{
u(x, t, z) = a0(t, z)+ a1(t, z)ψ(x, t, z)+ a2(t, z)ψ2(x, t, z),

v(x, t, z) = b0(t, z)+ b1(t, z)ψ(x, t, z)+ b2(t, z)ψ2(x, t, z), (18)

where ψ(ξ) is a solution of fractional Ricatti equation Eq. (7).
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Substituting Eqs. (18) into (17) and collecting all the terms with the same power of
ψ(ξ) together, equating each coefficient to zero, yield a set of algebraic equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

24k3αb2 − 6kαa2b2 = 0,

3kαa0b1 − ωαlα(t)b1 − k3b1 = 0,

24k3αr(t)a2 + 2kαq(t)b2
2 + 2kα p(t)a2

2 = 0,

−kα p(t)a0a1 − kαq(t)b0b1 − ωαlα(t)a1 − k3αr(t)a1 = 0,

−54k3αb2 + 6k3αb1 − 6kαa1b2 − 3kαa2b1 + 6kαa2b2 = 0,

3kα p(t)a1a2−54k3αr(t)a2−2kαq(t)b2
2 −2kα p(t)a2

2 +6k3αr(t)a1+3kαq(t)b1b2 =0,

−12k3αb1+38k3αb2+3kαa2b1−6kαa0b2+2ωα lα(t)b2−3kαa1b1+6kαa1b2 = 0,

6kαa0b2+3kαa1b1+ωαlα(t)b1+7k3αb1 − 2ωαlα(t)b2 − 3kαa0b1 − 8k3αb2 = 0,

2kα p(t)a0a2 − 3kαq(t)b1b2 − 12k3αr(t)a1 + 2kαq(t)b0b2

+38k3αr(t)a2 − 3kα p(t)a1a2 + 2ωαlα(t)a2 + kα p(t)a2
1 + kαq(t)b2

1 = 0,

kα p(t)a0a1 − kα p(t)a2
1 − 2kα p(t)a0a2 + kαq(t)b0b1 − 2kαq(t)b0b2

−2ωαlα(t)a2 + 7k3αr(t)a1 − 8k3αr(t)a2 + ωαlα(t)a1 − kαq(t)b2
1 = 0.

(19)

Solving the above system of algebraic equations with the aid of MAPLE, we obtain
the following three set of nontrivial solutions;
Case 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

l(t, z) =
(
− kα(k2α−3a0(t,z))

ωα

)1/α
, r(t, z) = r(t, z), p(t, z) = p(t, z),

q(t, z) = − (−k2α+p(t,z)a0(t,z)+3a0(t,z)+k2αr(t,z))2

b2
0(t,z)(p(t,z)+3r(t,z))

,

a0(t, z) = a0(t, z), a1(t, z) = −4k2α, a2(t, z) = 4k2α,

b0(t, z)=b0(t, z), b1(t, z)=− 2k2α(q(t,z)b0(t,z)±
√

K )
a0(t,z)q(t,z)

, b2(t, z)= 2k2α(q(t,z)b0(t,z)±
√

K )
a0(t,z)q(t,z)

,

(20)

where K = q2(t, z)b2
0(t, z)− 4a0(t, z)q(t, z)(1 − r(t, z))(k2α − 3a0(t, z)).

Case 2:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

l(t, z) =
(
− k3α+3kαa0(t,z))

ωα

)1/α
, r(t, z) = − 2

5 p(t, z), p(t, z) = p(t, z),

q(t, z) = 16k4α p(t,z)
5b2

2(t,z)
, a0(t, z) = k2α(3p(t,z)−5)

5(3+p(t,z)) , a1(t, z) = −3k2α,

a2(t, z) = 4k2α, b0(t, z) = − 15b2(t,z)
32 ,

b1(t, z) = −2b2(t, z), b2(t, z) = b2(t, z). (21)
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Case 3:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

l(t, z) =
(

− 14k3αq(t,z)b2
2(t,z)

ωα(48k4α+5q(t,z)b2
2(t,z))

)1/α

, r(t, z)=− 2
5 p(t, z), p(t, z)= p(t, z),

q(t, z) = 16k4α p(t,z)
5b2

2(t,z)
, a0(t, z) = 2k2α(10+p(t,z))

5(3+p(t,z)) , a1(t, z) = −5k2α,

a2(t, z) = 4k2α, b0(t, z) = − 17
32 b2(t, z), b1(t, z) = 0, b2(t, z) = b2(t, z).

(22)

Substituting Eqs. (20) into (18), we can obtain the following traveling wave solution
of Eq. (17):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u1(x, t, z) = a0(t, z)− 4k2α 1

1+exp { ξα1
�(1+α) }

+ 4k2α 1

(1+exp { ξα1
�(1+α) })2

,

v1(x, t, z) = b0(t, z)− 2k2α(q(t,z)b0(t,z)±
√

K )
a0(t,z)q1(t,z)

1

1+exp { ξα1
�(1+α) }

+ 2k2α(q(t,z)b0(t,z)±
√

K )
a0(t,z)q2(t,z)

1

(1+exp { ξα1
�(1+α) })2

,
(23)

where q1(t, z) = − (−k2α+p(t,z)a0(t,z)+3a0(t,z)+k2αr(t,z))2

b2
0(t,z)(p(t,z)+3r(t,z))

, K = q2(t, z)b2
0(t, z) −

4a0(t, z)q(t, z)(1 − r(t, z))(k2α − 3a0(t, z)) and ξ1(x, t, z) = kx + ∫ t
0 (−k3α −

3kαa0(τ, z))1/αdτ + ξ0.
Next, the Case 2 yields the exact traveling wave solution of Eq. (17) in the following

form:

⎧⎪⎪⎨
⎪⎪⎩

u2(x, t, z) = k2α(3p(t,z)−5)
5(3+p(t,z)) − 3k2α 1

1+exp { ξα2
�(1+α) }

+ 4k2α 1

(1+exp { ξα2
�(1+α) })2

,

v2(x, t, z) = − 15b2(t,z)
32 − 2b2(t, z) 1

1+exp { ξα2
�(1+α) }

+ b2(t, z) 1

(1+exp { ξα2
�(1+α) })2

,
(24)

where ξ2(x, t, z) = kx + ∫ t
0 (−k3α − 3k3α(3p(t,z)−5)

5(3+p(t,z)) )1/αdτ + ξ0.

Finally, the Case 3 gives the exact traveling wave solution as

⎧⎪⎪⎨
⎪⎪⎩

u3(x, t, z) = 2k2α(10+p(t,z))
5(3+p(t,z)) − 5k2α 1

1+exp { ξα3
�(1+α) }

+ 4k2α 1

(1+exp { ξα3
�(1+α) })2

,

v3(x, t, z) = − 17b2(t,z)
32 + b2(t, z) 1

(1+exp { ξα3
�(1+α) })2

,
(25)

where ξ3(x, t, z) = kx + ∫ t
0

(
− 14k3α p(τ,z)

5(3+p(τ,z))

)1/α
dτ + ξ0.

In order to obtain white noise functional solutions for Eq. (2), we use the inverse
Hermite transform and Theorem 4.1.1 in [10]. The property of generalized exponential
functions yields that there exists a bounded open set G ⊂ R × R+,m < ∞, n > 0
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such that the solution {u(x, t, z), v(x, t, z)} of Eq. (15) and all its fractional deriva-
tives which are involved in Eq. (15) are uniformly bounded for (x, t, z) ∈ G × Km(n),
continuous with respect to (x, t) ∈ G for all z ∈ Km(n) and analytic with respect
to z ∈ Km(n), for all (x, t) ∈ G [9]. From Theorem 4.1.1 in [10], there exist
U (x, t, z), V (x, t, z) ∈ (S)−1 such that u(x, t, z) = Ũ (x, t)(z) and v(x, t, z) =
Ṽ (x, t)(z) for all (x, t, z) ∈ G × Km(n) and {U (x, t), V (x, t)} solves Eq. (2) in
(S)−1. Hence, by applying the inverse Hermite transform to Eqs. (23)-(25), we can
obtain the white noise functional solutions of Eq. (2).

Based on the solution (23), we get the following white noise functional solution

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U1(t, x) = a0(t)− 4k2α 1

1+exp� { 	α1
�(1+α) }

+ 4k2α 1

(1+exp� { 	α1
�(1+α) })�2

,

V1(t, x) = b0(t)− 2k2α(Q1(t)�b0(t)±
√

K )
a0(t)�Q1(t)

� 1

1+exp� { 	α1
�(1+α) }

+ 2k2α(Q1(t)�b0(t)±
√

K )
a0(t)�Q1(t)

� 1

(1+exp� { 	α1
�(1+α) })�2

,
(26)

where Q1(t) = − (−k2α+P(t)�a0(t)+3a0(t)+k2αR(t))2

b2
0(t)�(P(t)+3R(t))

, K = Q�2
1 (t)b

�2
0 (t) − 4a0(t) �

Q1(t) � (1−R(t)) � (k2α−3a0(t)) and	1(x, t) = kx+∫ t
0 (−k3α−3kαa0(τ ))

�(1/α)dτ+
	0,

Next, the following white noise functional solution of Eq. (2) is obtained from (24):

⎧⎪⎪⎨
⎪⎪⎩

U2(t, x) = k2α(3P(t)−5)
5(3+P(t)) − 3k2α 1

1+exp� { 	α2
�(1+α) }

+ 4k2α 1

(1+exp� { 	α2
�(1+α) })�2

,

V2(t, x) = − 15b2(t)
32 − 2b2(t) � 1

1+exp� { 	α2
�(1+α) }

+ b2(t) � 1

(1+exp� { 	α2
�(1+α) })�2

,
(27)

where 	2(x, t) = kx + ∫ t
0

(
−k3α − 3k3α(3P(t)−5)

5(3+P(t))

)�(1/α)
dτ +	0,

Finally, based on (25), we obtain the following white noise functional solution of
Eq. (2):

⎧⎪⎪⎨
⎪⎪⎩

U3(t, x) = 2k2α(10+P(t))
5(3+P(t)) − 5k2α 1

1+exp� { 	α3
�(1+α) }

+ 4k2α 1

(1+exp� { 	α3
�(1+α) })�2

,

V3(t, x) = − 17b2(t)
32 + b2(t) � 1

(1+exp� { 	α3
�(1+α) })�2

,
(28)

where 	3(x, t) = kx + ∫ t
0

(
− 14k3α P(τ )

5(3+P(τ ))

)�(1/α)
dτ +	0.

More precisely, the obtained solutions contain arbitrary functions which reveals that
the physical quantities U and V posses rich structures which may be used to discuss
the behavior of solutions as a function of these arbitrary functions and also to provide
enough freedom to build up solutions that may correspond to some particular physical
situations. Also, it is observed that the obtained white noise functional solutions are
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of exponential type. It is noted that for different forms of P(t), Q(t) and R(t), we can
get different solutions of Eq. (2) from formulas Eqs. (26) and (28).

As special cases whenα = 1, we can deduce the results for the following Wick-type
stochastic variable coefficients coupled KdV equations;⎧⎨

⎩
DtU + P(t) � U � DxU + Q(t) � V � Dx V + R(t) � D3

xU = 0,

Dt V + D3
x V − 3U � Dx V = 0,

(29)

Example 3.1 Assume R(t) = c1 P(t) and P(t) = ( f (t)+ c2Wt ), where c1 and c2 are
arbitrary constants and f (t) is bounded or integrable function on R+. Let Wt = Ḃt , Bt

is a Brownian motion. Further, we have P(t) = ( f (t)+ W̃ (t, z)), where the Hermite
transformation W̃ (t, z) = ∑∞

i=1 zi
∫ t

0 ηi (s)ds, where z = (z1, z2, · · · ) ∈ C
N is a

parameter and ηi (s) is defined in [16]. By the definition of W̃ (t, z), Eq. (26) yields
the white noise functional solution of Eq. (29) as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U1(t, x) = a0(t)− 4k2 1
1+exp	1

+ 4k2 1
(1+exp	1)2

,

V1(t, x) = b0(t)− 2k2(Q1(t)b0(t)±
√

K )
a0(t)Q1(t)

1
1+exp	1

+ 2k2(Q1(t)b0(t)±
√

K )
a0(t)Q1(t)

1
(1+exp	1)2

,

(30)

where Q1(t) = − (−k2+3a0(t)+(a0(t)+c1k2)( f (t)+c2Wt ))
2

(1+3c1)b2
0(t)( f (t)+c2Wt )

, K = Q2
1(t)b

2
0(t)−4a0(t)Q1(t)

(1−c1( f (t)+c2Wt ))(k2 −3a0(t)) and	1(x, t) = kx +∫ t
0 (−k3 −3ka0(τ ))dτ+	0.

Example 3.2 Moreover, we have a relation of R(t) and P(t) in the coefficient set of
Case 2 and Case 3 as follows; R(t) = − 2

5 P(t), but we know that this relation is not
depend on the coefficients of the exact solutions of Eqs. (27) and (28) such as Ui (x, t)
and Vi (x, t), i = 2, 3. Also, based on Eq. (27), we obtain the white noise functional
solution of Eq. (29) in the form;

⎧⎪⎨
⎪⎩

U2(t, x) = k2(3( f (t)+c2Wt )−5)
5(3+( f (t)+c2Wt ))

− 3k2 1
1+exp	2

+ 4k2 1
(1+exp	2)2

,

V2(t, x) = − 15b2(t)
32 − 2b2(t)

1
1+exp	2

+ b2(t)
1

(1+exp	2)2
,

(31)

where 	2(x, t) = kx + ∫ t
0

(
−k3 − 3k3(3( f (t)+c2Wt )−5)

5(3+( f (t)+c2Wt ))

)
dτ +	0.

Further, the Eq. (28) yields the following white noise functional solution of Eq.
(29); ⎧⎪⎨

⎪⎩
U3(t, x) = 2k2(10+( f (t)+c2Wt ))

5(3+( f (t)+c2Wt ))
− 5k2 1

1+exp	3
+ 4k2 1

(1+exp	3)2
,

V3(t, x) = − 17b2(t)
32 + b2(t)

1
(1+exp	3)2

,

(32)

where 	3(x, t) = kx + ∫ t
0

(
− 14k3( f (τ )+c2Wτ )

5(3+( f (τ )+c2Wτ ))

)
dτ +	0.
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Fig. 1 The figures represent the solutions, U1(t, x) and V1(t, x) of Eq. (30) for the Wick-type stochastic
coupled KdV Eq. (29); c1 = 0.1, c2 = 1,Wt = random[0, 1]×tan(1.7t), f (t) = cos(t), a0(t) = b0(t) =
sin(2t) + cos(2t),	0 = −2, k = 0.4
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Fig. 2 The figures represent the solutions, U1(t, x) and V1(t, x) of Eq. (30) for the Wick-type stochastic
coupled KdV Eq. (29); c1 = 0.1, c2 = 1,Wt = 0, f (t) = cos(t), a0(t) = b0(t) = sin(2t)+cos(2t),	0 =
−2, k = 0.4

The behaviour of the obtained solutions Eqs. (30) and (31) is shown graphically
in Figs. 1 and 2 for different values of α and given parameters. Figure 1 represents
the evolutional behaviors of Eq. (30) with white noise effect Wt = random[0, 1] ×
tan(1.7t) and Fig. 2 presents the behaviors of Eq. (30) without effect of stochastic
term Wt = 0. From Figs. 3 and 4, it is concluded that the stochastic forcing term leads
to the uncertainty of the wave amplitude.

4 Conclusion

In this paper, the fractional sub-equation method based on the Kudryashov technique
is employed to obtain exact travelling wave solutions of stochastic fractional partial
differential equations. In particular, with the aid of symbolic computation systems such
as Maple and Mathematica, we obtain wider class of exact travelling wave solutions
of Wick-type stochastic fractional variable coefficients coupled KdV equations. The
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Fig. 3 The figures represent the solutions, U2(t, x) and V2(t, x) of Eq. (31) for the Wick-type stochastic
coupled KdV Eq. (29) when c2 = 0,Wt = Wt , b2(t) = sin(2t), f (t) = 5/3, 	0 = 0, k = −0.4
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Fig. 4 The figure represents the behaviors of the solution U2(t, x) of Eq. (31); t = 0, 2, 4, 6, 8. Moving
left direction as t increases

obtained results demonstrate the reliability of the proposed method and its wider
applicability in solving stochastic nonlinear fractional partial differential equations. A
detailed description of the proposed technique is provided which enables one to find
exact solutions of various kind stochastic fractional partial differential equations.
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